循環型生産システムを実現する |業製品の製造からリサイクルまで、 買し た有効利用の方法を研究し、

研究室

での環境管理に関する研究 製品の製造からリサイクルま

る全ての段階で「環境に優しく」 サイクル業者といった、製品が辿 製造者→ディーラー→消費者→リ 基づくものである。具体的には るまでを、 製品が製造されてその役割を終え トの研究」を行っている。これは ダクトライフサイクルマネジメン ない形で管理しようという発想に 当研究室では「環境配慮型プロ 、より環境に負荷をかけ に設ければ一番効率的か。修理や

由良 憲 Kenji YURA の環境負荷削減手法 製品使用時(消費者のレベルで) 方法を見出そうとする研究だ。 経済性・効率性」の面でも優れた 消費者にとっては、製品の修理 この研究の中心柱は2本ある。

を設けて回収するにしても、どこ 考慮する。サービスポイントなど のエンドユーザがどこに住んで、 も高額になってしまうため、製品 が高くては修理やリサイクル費用 解決する必要がある。回収コスト ら製品を回収するかという問題を どの程度ばらついているかなどを には、どのような方法で消費者か ができれば便利である。そのため クルサービスを気軽に受けること などのアフターサービスやリサイ

見出すことが、リサイクルやリ ル業者も簡便に立ち寄れる立地を ニューアルの推進につながる。 修理を請け負う製造者やリサイク

諸点を考慮して、製品の生命が終 わるまでの一貫サービスを目的と した最適化を計算している。 そこで、当研究室ではこうした

回収物を分解して有効に活用す るための最適な算出論理の研究

いのかといったことにつき、有効 出した後、残りは廃棄する方がよ て中古市場に回すのがよいのか、 を一部修理したり入れ替えたりし 検証・解明するものである。部品 れば最も有効に再利用できるかを 換言すれば、 使える部品だけを取り 回収製品をどうす リサイクルに持ち込む消費者も、

る。 を立てることが可能になるのであ 記録する方法がある。いわば、製 付けて製造データや修理データを に判断する手法を研究している。 するような修理やリサイクル計画 を判断し、製品を最も有効に活用 を見ることによって、製品の状態 を付けるようなもので、この記録 品の「健康状態」を判断するカルテ 具体的には、製品にICタグを

ライフサイクルアセスメント アドバンテージ

の評価に多くの知見

門としていて、産業製品のライフ 荷を低減するこの研究に、すでに サイクル全般を効率化し、 由良は、生産システム管理を専 環境負

ウと幅広い経験を有している。 論や手法について、多くのノウハ サイクルアセスメント評価の方法 れについて、ライフサイクルアセ 分解、モデル化、最適化のそれぞ づく評価によって行われている。 ライフサイクルアセスメントに基 クルまでの一貫した有効利用は、 成に携わった経験があり、ライフ スメントのためのソフトウェア作 約20年にわたって取り組んでいる。 現在、製品の製造時からリサイ 由良は、製品のリニューアル、

配慮が強く望まれ、製造業者も消 上で必要不可欠な研究 昨今、年を追うごとに環境への

これからの産業社会を考える

費者も環境に配慮した製品の製造

製品の使い方・捨て方を考え

情報学専攻 由良 憲二 教授 日本情報経営学会、スケジュ リング学会、情報処理学会、 所属学会 本機械学会、日本オペレーショ ンズ・リサーチ学会 E-mail yura@se.uec.ac.jp

イクル計画最適化

配慮型プロダクトライフサイクルマ ネジメント、環境負荷削減方策、ライフ サイクルアセスメント、製品ライフサイ クル最適化、製品のリニューアル/リサ

大学院情報理工学研究科

研究室風景

製

今後の展開

明な消費行動をもたらす ことが環境負荷低減とより腎 消費者に製品情報を提供する ある調査によると、現代の消費

> う人々が4割に及ぶという。こう をすればよいのかわからないとい のために具体的にどのような行動 者は環境への関心は高いが、 ステムの研究をもっと深めていき した消費者(エンドユーザ)のため 今後、 製品のリニューアルシ

の研究室の大きなアドバンテージ

テーマを研究していることは、

ることが大切になってきている。 これからの社会に必要不可欠な

ばよいのか、あるいは、 障が生じた場合、 品の保守・ 管理 どこを修理すれ 情報 そうした (ある故

普及しやすくなる。製品購入時や

んだりといった消費行動も実行

環境によりよいサービスを提供 がよいのかといったこと)やリサ 現象が起こったらもう廃棄した方 入手できるようになれば、 いのかといったこと)が、 イクル情報(どこに持ち込めばよ ージなどを通じて家庭で簡便に

、イクルしやすい型番の製品を選 いる企業の製品を選んだり、 W e b 逆に、

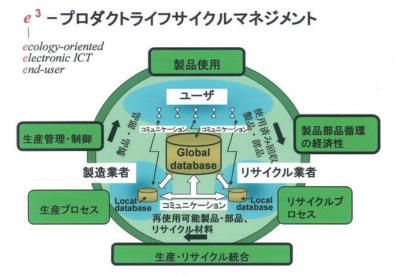
ろう。 実践手法の構築

が を考えた製品製造の研究にもつな クル業者に共有されることで、 いっていくことが期待される。 イクル方法の研究やリサイクル こうした情報が製造者やリサイ

イメージすることも容易になるだ 医用時に、 未来の環境への影響を

循環型生産システムの理論と

地球温暖化問題がグローバルな 1)


リサイクル 製造業者 品 業者 製造 製品, 製品構成・部品表 (3Dモデル 設計 BOM, 図面データ), 製品カタログなど リサイクル 製品取扱 製品履歴 製品取扱説明書 製品・部品の存在 リサイクル 制 造 製造作業マニュアル, 保守点検マニュアアル, 修理マニュアルなど 場所と状態, 製造 状況履歴, 点検修 CAD / CAM / リサイクル 修理履歴など CAPP データ 設備,リサ 設備データ、生 イクル処理 計画. リサ 産計画, 販売 コミュニケーション イクル材販 計画,物流計 製造業者 顧客, リサイクル 売計画など 画など 業者、運送業者、金融機関などの連絡 ,担当部門,アクセス権限など Local Local database Global database database

製品使用

٦· ザ

©電気通信大学環境調和型ライフサイクル研究ステーション

製造業者、消費者、リサイクル業者への情報支援

©電気通信大学環境調和型ライフサイクル研究ステーション

環境配慮型プロダクトライフサイクルマネジメント

利用 理論と実践手法を構築していきた 課題となり、 荷を低減しつつ持続的な発展を可 心がかつてなく高まっている現 能とする、 元したい。 法を研究 工業製品を環境に優しい形で / 再利用する、 循環型生産システムの それによって、 その成果を社会に 地球環境全体への関 より有効な方 環境負 還